18.152 PROBLEM SET 2 SOLUTIONS

DONGHAO WANG

1. PROBLEM 1

Most students realized the relation of this problem with Theorem 2
in Lecture Note 2. One way to proceed is to generalize Theorem 2 first
to higher dimensions; let us state the theorem:

Theorem 1.1. Let 2 be a bounded convex open set of R™. Suppose
that a smooth function u satisfies

u, = Au in Qp where Qp = Q x [0,7),
u(z,0) = g(z) for € Q and some g: Q — R smooth,
u(o,t) =0 foroedd,tel0,9Q).

Then the following holds in Q.

[Vu(z,t)| < max [Vg(z)].
Solution to Problem 1. The main problem here is that the function u :
2 x [0,T] — R does not satisfies the boundary condition along 0 x
[0, 7] in Theorem , so it is necessary to make a correction and apply

Theorem [1.1] to a different function.
Consider the function

wy : 2 x [0,T] - R,
(x, 1) = w(x),
so w; is time-independent and solves the heat equation:
(w1)y = Aw,
since w :  — R is harmonic. Now the difference
upi=u—w; : Qx[0,T] - R,
satisfies all conditions in Theorem [L.1] with initial value:

uy(z,0) = u(x,0) —wi(x,0) = g(x) — w(x).
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Then Theorem implies that
IV (u=wi)(z, )] = [Vur(z, )] < max V(g —w)(z)],

so for any (z,t) € Qr,
[Vu(z, )] < |V(u—w)(@, 1) + [Vw: (2, )]
< max |[Vg[ + 2max |[Vuw].
e ze
Now we come to estimate the absolute value of u. Let K = max, g |g(7)|
and consider the function
v =u—K.
Then v’ satisfies the following properties:
u, = Au' in Qp,
u(z,0) <O0forze
u(o,t) <0 for any o € 0Q,t € [0,9).
By the maximum principle, v’ < 0 on Q, so
u < K.
Apply the same argument for —(u + K'), and we obtain that
—K < u.
As a result, |u(x,t)| < K for any (z,t) € Qp. O

The proof of Theorem follows the same line of argument in Lec-
ture Note 2 using Barriers and is omitted here. The grader would like to
encourage students to go through the proof and see how the boundary
condition

u(o,t) =0 for o € 0Q,t € [0, ),
is used in the proof of Theorem [I.1]

2. PROBLEM 4

Only two students figured out a complete solution to Problem 4.
Most of students got the right formula, but they didn’t realize the
difference between the Hessian and Laplacian:

|V20|? = Z |0;0;v|* and

1<i,j<n
n

|Av|? = (Z 07v)2.
i=1

They are the same only if the dimension is 1.
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Solution to Problem 4. We follow the proof of Theorem 5 in Lecture
Note 2. Let v = logu, then

0
o = 28
U
0;
aﬂ) = u,
u
0? 0;
07 = lu—( u)2,1<i<n,
u U
SO
—0w + Av + [Vol> = _ + i(a% + [0v]?)
t u Z:1 7 K3
_ —ou + Au _
— - —

Apply the Laplacian operator A to the equation above:
0/(Av) = A(Av) + A|Vo|?

= A(Av) + Zn] 7 ) lojuf?
i=1  j=1

= A(AU) + 2 i i 8i<(9i(9jv, ﬁjv>

i=1j=1

= A(Av) +2) ) (000, 00y + |0:050],

i=1j=1

= A(Av) + 2 Z(@Av, ajU> +2 Z ]81-8]-11]2
j=1

J I<ij<n

= A(Av) + 2V Av, Vo) + 2|V?0]?.

For any € > 0 and S > 0, consider the function

5 +e
=A 2
w v+ ‘1S
defined when t > —S, then
5 e
8tw = 8,5Av — (tQ—F—S)z’ Vw = VA’U,AIU = A(AU)
SO
oy

(1) ow = Aw + 2{Vw, Vv) + 2|V|* — -2 ‘

(t+9)2
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We claim that w > 0 for all ¢ > —S. Since w is periodic and
lim;,_gw(x) = o holds for all z € R", if w < 0 at some point then
there exists some space-time point (zo,ty) € R" x (=S,T) such that
w(zo,to) = 0 and w(zx,t) > 0 for all x € R™ and t € (=S, ty). Therefore,
at the time slice R" x {to},

w(xo, ty) = grclg%&n w(x tp).

As a result,
0 = ﬁtw(ZL‘(),to), Vw(fbmto) = 0, Aw(l’o, t()) = 0,
and at (zo,to), the equation yields:

5 +e
2 0=>2(V] — 22—,
) Vil -
On the other hand, w(z,ty) = 0 implies that
5 +e
3 Av(zg, tg) = —2—.
(3) v(o, to) PR
To draw a contraction from ([2) and , we use the Cauchy-Schwartz
inequality:
|Av(zg,t0)]* = | Z 202 <n 2 |02v)?
1<i<n 1<igsn
<n > |00 = n|V?0]*,
1<i,y<n
We obtain a contradiction by plugging in and :

(%4-6)2 E %-}-6
t+S7 T2 (t+8)?2
if € >0. As a result, w = 0 and

5 €
Av > -2
YT s
By taking S — oo, we obtain that Av > 0 and

é’;u = 0w = Av + |Vu|]? =



	1. Problem 1
	2. Problem 4

