18.152 PROBLEM SET 2 SOLUTIONS

DONGHAO WANG

1. Problem 1

Most students realized the relation of this problem with Theorem 2 in Lecture Note 2. One way to proceed is to generalize Theorem 2 first to higher dimensions; let us state the theorem:

Theorem 1.1. Let Ω be a bounded convex open set of \mathbb{R}^{n}. Suppose that a smooth function u satisfies

$$
\left\{\begin{aligned}
u_{t} & =\Delta u \text { in } \bar{Q}_{T} \text { where } Q_{T}=\Omega \times[0, T), \\
u(x, 0) & =g(x) \text { for } x \in \bar{\Omega} \text { and some } g: \bar{\Omega} \rightarrow \mathbb{R} \text { smooth, } \\
u(\sigma, t) & =0 \text { for } \sigma \in \partial \Omega, t \in[0, \Omega) .
\end{aligned}\right.
$$

Then the following holds in \bar{Q}_{T} :

$$
\|\nabla u(x, t)\| \leqslant \max _{x \in \bar{\Omega}}\|\nabla g(x)\| .
$$

Solution to Problem 1. The main problem here is that the function u : $\bar{\Omega} \times[0, T] \rightarrow \mathbb{R}$ does not satisfies the boundary condition along $\partial \Omega \times$ $[0, T]$ in Theorem 1.1, so it is necessary to make a correction and apply Theorem 1.1 to a different function.

Consider the function

$$
\begin{array}{r}
w_{1}: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}, \\
(x, t) \mapsto w(x),
\end{array}
$$

so w_{1} is time-independent and solves the heat equation:

$$
\left(w_{1}\right)_{t}=\Delta w_{1}
$$

since $w: \bar{\Omega} \rightarrow \mathbb{R}$ is harmonic. Now the difference

$$
u_{1}:=u-w_{1}: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R},
$$

satisfies all conditions in Theorem 1.1 with initial value:

$$
u_{1}(x, 0)=u(x, 0)-w_{1}(x, 0)=g(x)-w(x) .
$$

[^0]Then Theorem 1.1 implies that

$$
\left\|\nabla\left(u-w_{1}\right)(x, t)\right\|=\left\|\nabla u_{1}(x, t)\right\| \leqslant \max _{x \in \bar{\Omega}}\|\nabla(g-w)(x)\|,
$$

so for any $(x, t) \in \bar{Q}_{T}$,

$$
\begin{aligned}
\|\nabla u(x, t)\| & \leqslant\left\|\nabla\left(u-w_{1}\right)(x, t)\right\|+\left\|\nabla w_{1}(x, t)\right\| \\
& \leqslant \max _{x \in \bar{\Omega}}\|\nabla g\|+2 \max _{x \in \bar{\Omega}}\|\nabla w\| .
\end{aligned}
$$

Now we come to estimate the absolute value of u. Let $K=\max _{x \in \bar{\Omega}}|g(x)|$ and consider the function

$$
u^{\prime}=u-K .
$$

Then u^{\prime} satisfies the following properties:

$$
\left\{\begin{aligned}
u_{t}^{\prime} & =\Delta u^{\prime} \text { in } \bar{Q}_{T}, \\
u(x, 0) & \leqslant 0 \text { for } x \in \bar{\Omega} \\
u(\sigma, t) & \leqslant 0 \text { for any } \sigma \in \partial \Omega, t \in[0, \Omega) .
\end{aligned}\right.
$$

By the maximum principle, $u^{\prime} \leqslant 0$ on \bar{Q}_{T}, so

$$
u \leqslant K
$$

Apply the same argument for $-(u+K)$, and we obtain that

$$
-K \leqslant u
$$

As a result, $|u(x, t)| \leqslant K$ for any $(x, t) \in \bar{Q}_{T}$.
The proof of Theorem 1.1 follows the same line of argument in Lecture Note 2 using Barriers and is omitted here. The grader would like to encourage students to go through the proof and see how the boundary condition

$$
u(\sigma, t)=0 \text { for } \sigma \in \partial \Omega, t \in[0, \Omega)
$$

is used in the proof of Theorem 1.1.

2. Problem 4

Only two students figured out a complete solution to Problem 4. Most of students got the right formula, but they didn't realize the difference between the Hessian and Laplacian:

$$
\begin{aligned}
\left|\nabla^{2} v\right|^{2} & :=\sum_{1 \leqslant i, j \leqslant n}\left|\partial_{i} \partial_{j} v\right|^{2} \text { and } \\
|\Delta v|^{2} & :=\left(\sum_{i=1}^{n} \partial_{i}^{2} v\right)^{2}
\end{aligned}
$$

They are the same only if the dimension is 1 .

Solution to Problem 4. We follow the proof of Theorem 5 in Lecture Note 2. Let $v=\log u$, then

$$
\begin{aligned}
& \partial_{t} v=\frac{\partial_{t} u}{u} \\
& \partial_{i} v=\frac{\partial_{i} u}{u} \\
& \partial_{i}^{2} v=\frac{\partial_{i}^{2} u}{u}-\left(\frac{\partial_{i} u}{u}\right)^{2}, 1 \leqslant i \leqslant n
\end{aligned}
$$

so

$$
\begin{aligned}
-\partial_{t} v+\Delta v+|\nabla v|^{2} & =-\frac{\partial_{t} u}{u}+\sum_{i=1}^{n}\left(\partial_{i}^{2} v+\left|\partial_{i} v\right|^{2}\right) \\
& =\frac{-\partial_{t} u+\Delta u}{u}=0
\end{aligned}
$$

Apply the Laplacian operator Δ to the equation above:

$$
\begin{aligned}
\partial_{t}(\Delta v) & =\Delta(\Delta v)+\Delta|\nabla v|^{2} \\
& =\Delta(\Delta v)+\sum_{i=1}^{n} \partial_{i}^{2} \sum_{j=1}\left|\partial_{j} v\right|^{2} \\
& =\Delta(\Delta v)+2 \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{i}\left\langle\partial_{i} \partial_{j} v, \partial_{j} v\right\rangle \\
& =\Delta(\Delta v)+2 \sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\partial_{i}^{2} \partial_{j} v, \partial_{j} v\right\rangle+\left|\partial_{i} \partial_{j} v\right|^{2}, \\
& =\Delta(\Delta v)+2 \sum_{j=1}^{n}\left\langle\partial_{j} \Delta v, \partial_{j} v\right\rangle+2 \sum_{1 \leqslant i, j \leqslant n}\left|\partial_{i} \partial_{j} v\right|^{2} \\
& =\Delta(\Delta v)+2\langle\nabla \Delta v, \nabla v\rangle+2\left|\nabla^{2} v\right|^{2} .
\end{aligned}
$$

For any $\epsilon>0$ and $S>0$, consider the function

$$
w:=\Delta v+\frac{\frac{n}{2}+\epsilon}{t+S}
$$

defined when $t>-S$, then

$$
\partial_{t} w=\partial_{t} \Delta v-\frac{\frac{n}{2}+\epsilon}{(t+S)^{2}}, \nabla w=\nabla \Delta v, \Delta w=\Delta(\Delta v)
$$

so

$$
\begin{equation*}
\partial_{t} w=\Delta w+2\langle\nabla w, \nabla v\rangle+2\left|\nabla^{2} v\right|^{2}-\frac{\frac{n}{2}+\epsilon}{(t+S)^{2}} . \tag{1}
\end{equation*}
$$

We claim that $w \geqslant 0$ for all $t>-S$. Since w is periodic and $\lim _{t \rightarrow-S} w(x)=\infty$ holds for all $x \in \mathbb{R}^{n}$, if $w<0$ at some point then there exists some space-time point $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{n} \times(-S, T)$ such that $w\left(x_{0}, t_{0}\right)=0$ and $w(x, t)>0$ for all $x \in \mathbb{R}^{n}$ and $t \in\left(-S, t_{0}\right)$. Therefore, at the time slice $\mathbb{R}^{n} \times\left\{t_{0}\right\}$,

$$
w\left(x_{0}, t_{0}\right)=\min _{x \in \mathbb{R}_{n}} w\left(x, t_{0}\right) .
$$

As a result,

$$
0 \geqslant \partial_{t} w\left(x_{0}, t_{0}\right), \nabla w\left(x_{0}, t_{0}\right)=0, \Delta w\left(x_{0}, t_{0}\right) \geqslant 0,
$$

and at $\left(x_{0}, t_{0}\right)$, the equation (1) yields:

$$
\begin{equation*}
0 \geqslant 2\left|\nabla^{2} v\right|^{2}-\frac{\frac{n}{2}+\epsilon}{(t+S)^{2}} \tag{2}
\end{equation*}
$$

On the other hand, $w\left(x_{0}, t_{0}\right)=0$ implies that

$$
\begin{equation*}
\Delta v\left(x_{0}, t_{0}\right)=-\frac{\frac{n}{2}+\epsilon}{t+S} \tag{3}
\end{equation*}
$$

To draw a contraction from (2) and (3), we use the Cauchy-Schwartz inequality:

$$
\begin{aligned}
\left|\Delta v\left(x_{0}, t_{0}\right)\right|^{2} & =\left|\sum_{1 \leqslant i \leqslant n} \partial_{i}^{2} v\right|^{2} \leqslant n \sum_{1 \leqslant i \leqslant n}\left|\partial_{i}^{2} v\right|^{2} \\
& \leqslant n \sum_{1 \leqslant i, j \leqslant n}\left|\partial_{i} \partial_{j} v\right|^{2}=n\left|\nabla^{2} v\right|^{2} .
\end{aligned}
$$

We obtain a contradiction by plugging in (2) and (3):

$$
\left(\frac{\frac{n}{2}+\epsilon}{t+S}\right)^{2} \leqslant \frac{n}{2} \cdot \frac{\frac{n}{2}+\epsilon}{(t+S)^{2}},
$$

if $\epsilon>0$. As a result, $w \geqslant 0$ and

$$
\Delta v \geqslant-\frac{\frac{n}{2}+\epsilon}{t+S}
$$

By taking $S \rightarrow \infty$, we obtain that $\Delta v \geqslant 0$ and

$$
\frac{\partial_{t} u}{u}=\partial_{t} v=\Delta v+|\nabla v|^{2} \geqslant 0 .
$$

[^0]: Date: March. 5th, 2020.

